EXPLAINING FEATURE FLAG DEVOPS WITH DIAGRAMS

Feature-based development and release cycles are becoming more
common in cloud native software services (SaaS products), where
continuous development and continuous improvement are
important.

Instead of the long development time needed to implement large
changes in a software product, the development cycle for SaaS is

Traditional development ..., oowoomen

N\

shorter and more focused, even more so than the processes used by
agile software development teams.

The leaner and faster development process is underpinned by
feature flags and releases small updates often. It incorporates user
feedback constantly through built-in feedback loops that involve
active and stakeholder customers.

= Long development 0 0

« Slow release cycle
« Big changes, many features & bug fixes

Agile development

Faster development t{ Q

» Regular product releases

« Several features & bug fixes

» Customer feedback after release

= Retrospective to improve dev process

Feature flag DevOps

| L |
customer feedback
Release
Planning Development Retrospective
_\\\ ™
\ I
B —
customer feedback
U \ \
Release
Development
S S
N TN N i\

Concurrent development and service EI N

Constant small updates

Few features & bug fixes

Personalised features per customer segment
Live customer segment & split tests

Regular user feedback

cusfomer feedback & planning

EI.

Updates

DIAGRAM 1: DIFFERENCE BETWEEN TRADITIONAL, AGILE AND FEATURE FLAG DEVELOPMENT PROCESSES

draw.io

PAGE 1 OF 9

WHAT DO FEATURE FLAGS DO?

Feature flags, also known as feature toggles or feature controls, give
administrators and developers fine granular control over which
features are available to specific customer segments, essentially
extending development and testing into the operation and
deployment of the software.

‘I |User segments
L]

.

MGBIL;|

With feature flags, you can more easily test updates with real users
on live systems. You can also provide personalised features, enabling
or disabling functionality for each customer segment to better meet
their needs.

VIP— T%%;E

(v 3 | Modern interface | f f -:::Z-Z- |

Modern interface | @ Modern intarface

COEEEINEE 4O

w] @ T

COEIITNEE 4O

API Access | « O | API Access |

COEITTEE @ NEIITTEE CO[Awmws
COEITETE @ EEITIITTE O owmmees |
CEENEE $COEEITES ¢ TR

DIAGRAM 2: HOW FEATURE FLAGS TOGGLE SOFTWARE FUNCTIONALITY FOR DIFFERENT USER GROUPS

draw.io

PAGE 2 OF 9

GRANULAR CONTROL AFTER DEPLOYMENT

Feature flags allow you to target users in defined segments and customise how they can see and use your Saa$S product.

Deploy but hide features that aren’t yet ready, test
dependencies and prepare intertwined systems for future
updates.

Separate frontend and backend by using one feature flag
category for Ul component visibility and another to control
APIls and configurations.

Split test (A/B test) two versions of a feature or interface to
see which is more popular with users.

N CIRCIRET ™

Feature Incremental Split Off Usage User Personalised
flags rollout testing switch analytics targeting features
Marketing Y
. Sales [
Operations
[5;) Development

DIAGRAM 4: COMMON TEAMS AND HOW THEY CAN USE FEATURE FLAGS

Block users from accessing certain features.

Roll back an unstable update easily by disabling the
problematic feature flag.

Allow users to opt-in to new features as they are released or
opt-out and personalise which features they want to see.

Soft launch a new feature to a small group and progressively
expand access using multivariate feature flags for ease of
split testing, gathering feedback and mitigating risks.

Incremental
feature rollout

&
=/ Test group g

O
10% users m O O O
50% users gm OOD
All users Qm

DIAGRAM 3: INCREMENTALLY DELIVER NEW FEATURES TO A PERCENTAGE OF USERS

The reasons why feature flags are useful in many situations and for many different teams are clear. However, it’s a little harder to explain how
the development structure must change.

draw.io

PAGE 3 OF 9

GITFLOWS TO VISUALISE DEVELOPMENT STRUCTURE

In both agile and traditional software development, teams typically work on separate feature branches. Once the feature development is done,
these branches are merged into a main development or nightly build branch. Before release, a candidate build needs to pass various tests, and
then the software update is released to customers.

Several new features or updates to fix bugs are usually combined into the one release, as you can see in the gitflow diagram below.

RG1 RGZ AC3 | | |
P) N |
A - A) i Release
A W £ S - : : Release Fixes
: S S N : :
_ _ H

DIAGRAM 5: AN AGILE DEVELOPMENT GITFLOW USING FEATURE DEVELOPMENT BRANCHES, A NIGHTLY BUILD BRANCH AND RELEASE CANDIDATE BUILDS

SaaS and feature flag DevOps can use this git branching structure, but as each update contains a minimal number of features and bug-fixes, an
extra branch just for that release adds too much overhead. Instead, development branches hang directly off the main release branch for a more
streamlined development process.

draw.io PAGE 4 OF 9

*
0
5]

- Y YT T U S
SRR T I UL At O N MR N B R I e S
|

Features

o7
70
@

DIAGRAM 6: A STREAMLINED TRUNK-BASED SAAS AND FEATURE FLAG DEVOPS GITFLOW

Without indicating the feature flags that are applied to the deployed software, this gitflow shows only half of the story.

With draw.io, there are many ways to show feature flags in a diagram - tags, tooltips, and shape metadata can be used to explain how feature
flags apply to each release or development branch. Tags are particularly useful for training documentation, as you can interactively display or
hide shapes with specific tags in the diagram and see how the functionality is affected when those feature flags are enabled or disabled on the
deployed software.

Alpha Alpha

Hidden Al
pha AJB test AJB test Ul
AF| AP

o i L i 00

i N T L ' £ 1] £ Y !
| b b Fe--- - { P 4 | R i Features

DIAGRAM 7: CALLOUTS USING LIST SHAPES ON RELEASES ARE THE CLEAREST WAY TO SHOW FEATURE FLAGS IN STATIC IMAGES

draw.io PAGE 5 OF 9

http://drawio.com/blog/gitflow-feature-flags.html

IMPLEMENTING FEATURE FLAGS IN DEPLOYMENT AND DEVELOPMENT

A feature flag system or feature toggle system works in two parts. One stores whether a feature is to be enabled or not, and the other part
checks this flag configuration state whenever it is requested by the deployed system. If a feature is enabled for the customer currently using the

system, allow whatever it is toggling. If it is disabled, hide it from the user.

In the code, you need to define each feature flag and wrap its affected code segments with conditional statements.

1. Define the feature flags in a single location.

This could be in a well-structured XML file or in data
structures in the code.

Regularly delete any old feature flags that are no longer used
to minimise the complexity of this file.

Feature Flag Definition

+ FlaglD: string

+ FlagName: string

+ FlagDescription: string
<>| + FlagType: string

+ FlagDefault: bool

Feature Flag Category
+ FlagCategoryName: string

Extends

Feature Flag Split Test

+ FlagParameters: string

2. During development, wrap necessary code sections in the
feature flag conditional so they can be enabled or disabled
via the control interface. Not every code change will require
a feature flag.

if (featureFlag) {

// Run this code block if enabled

else {
// Run this code block if disabled

}

The string used lo wrap the affecfed code segment

A human-readable name for the feature flag

Explaining why and where this feature flag is used

To show what category of flag it is, e.g. Ul, AP, system
0 is disabled by default, 1 is enabled by default

Configuration options indicating which code path to run for a particular user segment

DIAGRAM 8: A UML CLASS DIAGRAM TO DEFINE THE DATA STRUCTURE IN A FEATURE FLAG SYSTEM

draw.io

PAGE 6 OF 9

CONTROLLING AND TOGGLING FEATURES

In the deployed system, a boolean check will decide whether a specific code segment is to be executed or not. You’ll need an accessible way to
control which feature flags are enabled and disabled, via a control panel or another mechanism. This front end determines which code paths are

executed for specific customer segments in the running system.

Y O
RN

Page 1

E Saas Admin List of all feature flags

Production F !
Click on a flag name to change user target and rollout rules.
Feature flags .

2 - . . _
e Definitions New Feature A feature-a apnaest S weeks ago
Awaiting feedback from user test group

Logs i hidd
E o] @ Hidden ~dden all-users & monins ago

For testing conflicts with new features

¢ Settings Modern intertace medern-node 10% & VIP 3 waaks agn

Gradual roll out of the new interface

: Integrations

e Help

DIAGRAM 9: A MOCKUP OF A CONTROL INTERFACE FOR FEATURE FLAGS ON DEPLOYED CLOUD SOFTWARE

While you can build your own feature flag control system, there are several platforms and services available that provide this functionality. LaunchDarkly is
the most commonly recommended, including by Atlassian and Microsoft.

PAGE 7 OF 9

draw.io

https://launchdarkly.com/
https://www.atlassian.com/continuous-delivery/principles/feature-flags
https://learn.microsoft.com/en-us/devops/operate/progressive-experimentation-feature-flags

WHY EXPLAIN USING DIAGRAMS?

Humans process visual information faster and more easily than text explanations. Software development has many difficult concepts and complex processes,
therefore, it is easier to understand when visualised.

Most of the web resources covering feature flag DevOps are pure text explanations. These aren’t helpful when trying to convince a time-poor and less
technical audience, such as those in management, the value of a change to an existing development process. It’s faster and easier to explain with the help of

diagrams.

All the diagrams in this document were created with draw.io using our online diagramming app at app.diagrams.net and its built-in shape libraries.

DIFFERENT TYPES OF DIAGRAMS

Teams from different departments need a variety of diagrams for various purposes - training, documentation, planning, presentations, project tracking, and

soon.
o=98 . HOQ®» @O p—— ne %
o — Gl e With draw.io, you can draw an extensive range of diagrams.
e
o R e e = From highly technical UML software specifications, cloud infrastructures,
D‘JJ S { G e — , user flows, and interface mock-ups, through to whiteboard sketches,
s L_,,,,'f;':—_—,-..é.;:o;‘ =l customer analyses, business processes and educational infographics, you
= : TR can draw whatever you need.

Please see our gallery of example diagrams for more inspiration.

acons e < rshasavocs

DIAGRAM 10: A BPMN DIAGRAM BEING EDITED IN DRAW.IO

PAGE 8 OF 9

draw.io

https://app.diagrams.net/
https://drawio.com/example-diagrams.html

= RECIT | o HOoor&E A crarges wamg 20 R«
In addition to the vast shape library and built-in templates, you can create
your own shapes, edit connection points on existing shapes, and draw
freehand shapes.

Teams can work together on the same diagram with shared cursors for
seamless remote collaboration.

You can also automatically generate diagrams from text - Mermaid, CSV,
SQL, and more.

+

To diagram faster, you can customise the editor to use your preferred

styles, fonts, and colours. DIAGRAM 11: ANNOTATING AN AWS NETWORK DIAGRAM WITH A FREEHAND

SHAPE IN A TEAM MEETING USING DRAW.IO AS AN ONLINE WHITEBOARD

START DIAGRAMMING TODAY

Anyone can use our free web application at app.diagrams.net or download the draw.io desktop app (Linux, Microsoft and macOS) to diagram offline.

As diagrams.net is open source, there are integrations available for many third-party platforms, in addition to our own extensions for Microsoft, Google and
Atlassian products.

Your diagram data is secure - you choose which cloud storage platform or device to use to save your diagram files. No account is needed to view or work with
your diagrams.

Visit drawio.com to learn more.

draw.io PAGE 9 OF 9

https://app.diagrams.net/
https://get.diagrams.net/
http://drawio.com/integrations.html
https://office.diagrams.net/
https://gsuite.diagrams.net/
https://marketplace.atlassian.com/apps/1210933/draw-io-diagrams-whiteboards
https://drawio.com/

	What do feature flags do?
	Granular control after deployment

	Gitflows to visualise development structure
	Implementing feature flags in deployment and development
	Controlling and toggling features

	Why explain using diagrams?
	Different types of diagrams
	Start diagramming today

